Integer-valued polynomials, Prüfer domains and the stacked bases property
نویسندگان
چکیده
منابع مشابه
Integer-Valued Polynomials: Looking for Regular Bases (a Survey)
This paper reviews recent results about the additive structure of algebras of integer-valued polynomials, and particularly, the question of the existence and the construction of regular bases. Doing this, we will be led to consider questions of combinatorial, arithmetical, algebraic, ultrametric or dynamical nature. 2010 MSC. Primary 13F20; Secondary 11S05, 11R21, 11B65
متن کاملGeneralizations of Dedekind domains and integer-valued polynomials
This talk will provide a snapshot of contemporary commutative algebra. In classical commutative algebra and algebraic number theory, the Dedekind domains are the most important class of rings. Modern commutative algebra studies numerous generalizations of the Dedekind domains in attempts to generalize results of algebraic number theory. This talk will introduce a few important generalizations o...
متن کاملInteger-valued Polynomials
Let R be a Krull ring with quotient field K and a1, . . . , an in R. If and only if the ai are pairwise incongruent mod every height 1 prime ideal of infinite index in R does there exist for all values b1, . . . , bn in R an interpolating integer-valued polynomial, i.e., an f ∈ K[x] with f(ai) = bi and f(R) ⊆ R. If S is an infinite subring of a discrete valuation ring Rv with quotient field K a...
متن کاملmathbb { Z } ) } $ $ have the stacked bases property ?
It is known that a Prüfer domain either with dimension 1 or with finite character has the stacked bases property. Following Brewer and Klinger, some rings of integer-valued polynomials provide, for every n ≥ 2, examples of n-dimensional Prüfer domains without finite character which have the stacked bases property. But, the following question is still open: does the two-dimensional Prüfer domain...
متن کاملInteger-valued Polynomials on Algebras
Let D be a domain with quotient field K and A a D-algebra. A polynomial with coefficients in K that maps every element of A to an element of A is called integer-valued on A. For commutative A we also consider integer-valued polynomials in several variables. For an arbitrary domain D and I an arbitrary ideal of D we show I -adic continuity of integer-valued polynomials on A. For Noetherian one-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2020
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2019.05.011